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We derive a set of general equations of the Landau-Ginzburg type describing the spatiotemporal evo-
lutions of the tensorial order parameter of the nematic phase. We study numerically, for a particular
case (thin nematic film), the equilibrium points and the dynamical behavior (pattern formation, nu-
cleation and growth processes, and defects) of the isotropic-anisotropic phase transition. We discuss the
biaxial zones, which are located at the core of the defects and at the interfaces of the nucleating domains,

and the shape of these nuclei.
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I. INTRODUCTION

The isotropic-anisotropic nematic phase transition has
been extensively studied from both experimental and
theoretical points of view during the past twenty years
[1]. When a nematic liquid crystal is quenched from a
high-temperature phase, where it is in a homogeneous
isotropic stable state, to a lower-temperature phase,
where this state becomes metastable with respect to an
anisotropic one, a first-order phase transition takes place
[2]. The time evolution of the system is governed by a
nucleation and growth process and since the molecular
orientations are random inside the nematic phase, by
domain coalescence, a great number of topological de-
fects appear. The number density of these defects de-
creases as a function of time, leading the sample towards
a homogeneous anisotropic phase, without defect. With
the help of a set of nonlinear partial derivative equations
describing the spatiotemporal evolutions of the tensorial
order parameter Q;; [3,4], we study the dynamics of the
isotropic-nematic phase transition (nucleation and
growth) and the time evolution law of defects in the an-
isotropic phase [5] of a thin nematic film.

These problems are of real technological interest since
they govern the mechanical properties of these materials.
We particularly analyze the influence of the elastic con-
stant values on both the nucleating domain growth and
the director field at the isotropic-anisotropic interfaces.

II. MODEL

A. Order parameter

The isotropic-anisotropic phase transition is described
by a continuum theory. In this case, we focus our atten-
tion on a small set of semimacroscopic variables whose
dynamical evolutions are ‘“slow” compared to the
remaining degrees of freedom. The dynamical equations
of motions for this set of variables are then obtained by
either phenomenological arguments [4] or formal projec-
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tion operator techniques [6]. The choice of the variables
is very important; we do not want to omit any essential
features or introduce any unnecessary complexity.

The difference between the orientational order proper-
ties of the high-temperature isotropic liquid and the low-
temperature nematic mesophase is revealed by the mea-
surement of all the macroscopic tensor properties such as
the magnetic and dielectric susceptibilities or the refrac-
tive indices [3]. Then the convenient order parameter,
defined at the lower expansion order and taking into ac-
count both the preferred directions of the molecules
(directors) and the degree of order around these direc-
tions (orientational order parameters), is a symmetric
second-rank tensor, which describes the head-tail symme-
try of the nematic phase. These preferred directions are
identified by unit vectors, so the order parameter verifies
TrQ =0.

In the equilibrium anisotropic state or far from the de-
fect zones, the nematic liquid crystal is homogeneous and
uniaxial and then described by a tensorial order parame-
ter Q;;=S/2(3n;n;—5,;), where n; are the director com-
ponents and S is the conventional scalar orientational or-
der parameter. However, in the defects zones or at the
isotropic-anisotropic interface, a full description taking
into account the biaxiality of the system must be con-
sidered [7].

B. Free energy density

The phenomenological free energy density f derived by
de Gennes upon symmetry arguments is constituted by
two parts: a homogeneous one (the bulk free energy den-
sity) and an inhomogeneous one (the gradient free energy
density) describing the spatial variations of the tensorial
order parameter (coarse grained approximation). Since
the transition is weakly first order, the free energy density
can be expanded around the isotropic phase of the nemat-
ic liquid crystal. The expansion is made at high enough
order to ensure the thermodynamical stability of the sys-
tem. For this reason and keeping in mind that the free
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energy must be a scalar quantity, one only retains the
terms up to fourth order for the bulk free energy density
and to second order for the gradient energy density; these
last terms are taken to be only quadratic in Q;; [8]:
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where i,j,k =x,y,2; a,b,c,,c, are temperature-dependent
coefficients derived from a mean-field-type theory [9], and
L,,L, are phenomenological coefficients related to the
nematic elastic constants. T* is the temperature of the
limit of stability of the isotropic phase.

We also define the temperature T**, above which only
the isotropic phase exists, and the isotropic-anisotropic
transition temperature T, (Fig. 1). For small molecules
liquid crystal and in our model (mean-field theory), we
have T*/T,=0.863 and T**/T,=1.017. Then, the
range of temperature [T*,T**] represents the metasta-
bility zone into which a coexistence between the isotropic
and nematic phases is possible. We must note that this
coexistence is an equilibrium state, only at T, (isotropic-
anisotropic phase equiprobability). Below T, the aniso-
tropic phase expands with time to the detriment of the
isotropic phase and above T, the situation is reversed.

The free energy density [Eq. (1)] allows the full descrip-
tion of both the phase transition phenomena (nucleation
and growth process) and the defect behavior in the aniso-
tropic phase. It contains, in addition to the classical term
describing the homogeneous free energy density
(Landau-de Gennes expansion), terms accounting for the
spatial variations of S (r) and fi(r) and coupling terms be-
tween them, with the surface contribution being omitted.

We recover two particular limit cases. The first case
corresponds to a fixed uniform director field and allows

f(S)

T>T** T=T** T=T. T=T*

0 0
sy=s’

S

FIG. 1. Shape of the free energy density of Landau-de
Gennes type as a function of temperature. In our model,
T*/T.=0.863 and T**/T,=1.017. For the reduced tempera-
ture T* /T,, we have S =0. S% and S° correspond to stable,
metastable, or unstable states, as explained in Sec. III C and Ap-
pendix B.
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the description of the phase transition by scalar order pa-
rameters. In an uniaxial phase, we have, from Eq. (1),

3
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where A4, B, and C are related respectively, to a, b, and
¢i,c,. The second case corresponds to an anisotropic
medium in which the orientational parameter is spatially
invariant (Frank elastic free energy [10]).

In the uniaxial limit, the elastic deformations of a
nematic phase are described, from Eq. (1), by
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The three coefficients introduced in this expression are
related, respectively, to the splay K, «(L,+L,/2),
twist K,, «L;, and bend K;3«<(L;+L,/2) elastic
coefficients, defined by Frank. We must note that, at this
order of expansion of the Landau—-de Gennes free energy
density, there are only two independent elastic constants,
with the bend and splay coefficients always being equal
[8]. Then we define an elasticity anisotropy parameter K

K=(L,/2)/(L,+L,/2)=1—K,, /K, , (4)

which represents the anisotropic character of the dynam-
ical process and is equal to zero, in the uniaxial limit,
when all three elastic constants are equal.

Through several experimental determinations of the
elastic constants, we have estimated the mean value
of the K parameter, introduced in our phenomenological
model, to 0.4. Indeed, for model liquid crystals
4-methoxybenzylidene-4'-n-butylaniline (MBBA),
O-hydroxy-p-methoxybenzylidene-p’-butylaniline
(OHMBBA), 4'-n-pentyl-4-cyanobiphenyl (5CB), and
para-azoxyanisole (PAA), K is equal, respectively, to 0.39
(at T/T,=0.96) [11], 0.37 (at T /T,=0.98) [11], 0.48 (at
T/T.=0.98)[12], and 0.36 (at T /T,=0.97) [13,14].

We must note that the validity of the two elastic con-
stant approximation is more questionable. It is only
verified for a small number of molecules, for example,
MBBA (K33 /K, =1.06 at T/T,=0.96 [11]) or OHMB-
BA (K33 /K =1.06 at T/T,=0.98 [11]), or very near
the transition temperature, for example, for PAA, where
K33 /K, is equal, respectively, to 2.1 at T/T,=0.97 and
tol7atT/T,~1[14].

C. Dynamical phenomenological equations

We assume that the spatiotemporal evolution of the
tensorial order parameter Q;;(r,z) is governed by the
variations of the free energy F (variational problem)
[2,15]. Then, we write a Ginzburg-Landau-type equation
for the nonconservative order parameter Q;;:
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dQ;; _ 5F

=—M,—
dt 78Q;;

with i,j=1,2,3;F= ff(Q)dr; and M;;, the rotational

kinetic coefficients, taken as M, =M,,=M;;=2M,

=2M,;=M.

In general (phase transition and defects in a three-
dimensional thermotropic nematic), we have, with the
constraints TrQ =0 and Q;;=0Qj;, a set of five coupled
nonlinear partial derivative equations describing the spa-
tiotemporal evolutions of the tensor components Q;,
Q1, Qi @13, and Q,;. We rewrite the nonlinear
dynamical equations [Eq. (4)] in a more convenient form
by introducing a scalar quantity Q¢ and two complex
quantities Q, and Q, defined by

01=0Q1r+tiQi;r, Q,=Qr TiQy; - (6)

We make the following change of variables:

0s=01,+t0y ,

(5)

Qir=Q21 92>

Q1r=20p, @)
Q=203 »

Q2 =20 .

Then, in the special case of a uniaxial nematic phase, Qg,
Q.r,> and Q,; are expressed as functions of the director
components n; =sinf cosg, n, =sinfsing, and n;=cosf
(where 0 is the polar angle and ¢ the azimuthal one),

QS=:§—(3 sin20—2) ,

Qr= %sinzﬂ cos2g ,

Q1,=%sin26 sin2g , (8)
Osr =%sin20 cosg ,

Q.= 3—2Ssin29 sing .

Finally, we also rescale time and space (t—7/M and
x—XV'L,+L,/2), where T and X are dimensionless
variables. Then the full set of equations is rewritten in
the form given in Appendix A.

III. THIN NEMATIC FILM

A. Evolution equations

The general set of equations of evolution is consider-
ably simplified in some particular cases. In the following,
we consider a three-dimensional system with an anchor-
ing energy on the glasses, which allows an orientation of
the local directors either parallel (“planar degenerate”
case) or perpendicular (homeotropic case) to the surfaces.
This anchoring is described by a quadratic contribution
in the components of the tensorial order parameter to the
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free energy density [16]. Moreover, it is taken sufficiently
weak to ensure a first-order phase transition towards a
uniaxial nematic phase [16]. In addition, we neglect the
spatial variations of the order parameter in the z direc-
tion; so the thickness of the film must be much smaller
than the other two dimensions. We have not explicitly
introduced the anchoring quadratic term into the model;
due to these assumptions, this term would only slightly
modify the numerical values of the temperatures of the
limit of metastability and of the transition, which are al-
ready phenomenological quantities.

Under these assumptions, we have 9;0;,=0 for any
i=S,1R,1I and Q,=0. Then the set of five equations is
reduced to two, which are rewritten

a9 B
=32 10 P24 +C1e, Qs
3B 2
*7Q§+6CQ§— 1=3K V20
K —
_Z(axxgﬁaﬂg,)] , ©)
dQl _ 2 2
=~ ((24+3BQs+6C0H)Q, +2C10,°Q,

—V?Q,—K3,,0s} , (10)

where Q, is the conjugated complex of Q; and
|Q,1>=Q3xr +Q};. The operator 3, is defined as
9,=9,+id,; then we have 3,,=97—35+2i9,9, and
aﬁ=a%—a§—2ialaz. In addition to a scalar equation,
we have a complex equation that is very similar to the
usual Ginzburg-Landau equation (plus an anisotropic
term K).

B. Equations resolution
and order parameters visualization

The set of nonlinear partial derivative equations are
numerically solved by using an explicit finite difference
scheme (first-order right difference scheme for time and
fourth-order centered difference scheme for space) on a
square grid of 128X 128 pixels, on a highly parallel com-
puter (Connection Machine CM-200). These simulations
are interactive: real-time variations of the parameters
governing the evolution of the system.

The visualization in physical space (directors and
orientational order parameters) is obtained at a given
time by diagonalization of the tensor Q;;; the directors
are given by the eigenvectors and the orientational order
parameters by the associated eigenvalues. In the case of a
thin nematic film, as previously defined, we always have
one of the eigenvectors perpendicular to the plane into
which the molecules lie, the two others being in the plane
itself. Then we arbitrarily choose one of these last two
eigenvectors to represent one of the preferred directions
of the molecules, the other (in the case when its exists,
then in the biaxiality zones) being given by the other
eigenvector.

The orientational order parameters describing the iso-
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tropic zones and uniaxial or biaxial anisotropic zones cor-
respond, respectively, to three zero eigenvalues and two
equal or three different nonzero eigenvalues. We must
also note that, since the order parameter is a tensor, the
defects observed in the space (Q;,Qg) have strengths
equal to twice those observed in the real physical space.

C. Associated dynamical system

The dynamical system, associated with our set of spa-
tiotemporal evolution equations, is deduced from Egs. (9)
and (10):

dQ B

dts =—3 7|Q1|2+2(A +ClQ,1)05
—%Q§+6CQ§ , (11)

dQ, ) )

— = {(24+3BQ+6C03)Q, +2C1Q, %0} -

(12)

We consider the fixed points of this system, which
represent the equilibrium or stationary states of the
nematic liquid crystal. Then they satisfy the identity
dQg /dt =dQ, /dt =0.

We find five fixed points (Figs. 2 and 3). They can be
regrouped into three sets, which obey

0s=0,=0; (13)
|Q1|=07

B 644C | 1
g, =—= |1+ |1— ;
Qsi 8C 3B2 >

and
|Q1|=3Q51‘:t ’
12 (15)
0! ___B |, _644C
St 16C | 3B2 )
Qs

Q:'>—.<

Q
Qr Qsu =

FIG. 2. Fixed points in the space (Qs,Qz,0Q1s)-
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FIG. 3. Fixed points in the space (Qs,|Q4]).

The relative stability of each fixed point, as a function of
temperature, is given in Appendix B, but in all cases
there are only three possible stable fixed points (equilibri-
um states). The meaning of these stable fixed points is
obtained by expressing the three eigenvalues A; of the
tensor order parameter Q,; as functions of the set of vari-

ables (Qg,0)

Qs . 10,
=— Ay=—1+ :
)\'O QS ’ + 2 2
Then the point (Q¢ =0, =0) corresponds to the isotro-

pic state, (1Q;|=0, Qs=Q¢ ) to a uniaxial (A, =2_)
equilibrium nematic state, and (|Q,|=3Qs, Qs =Q51-+ ) to

(16)

another uniaxial (A, =A4 or A_=A,) nematic phase. The
difference between these two anisotropic states is related
to the associated director field. With the help of Egs. (8),
we identify the first nematic state, which corresponds to a
homeotropic (6=0) configuration of the director i with
an orientational order parameter S, which satisfies
S=—0Qs.

The second mesophase corresponds to an equilibrium
state with a homogeneous “degenerated” planar
configuration of the director (6=m/2). The direction al-
ways remains in the plane (x,y) during the time evolution,
but all the possible orientations in this plane are energeti-
cally equivalent (the modulus of Q, only is specified, see
Fig. 2) and thus allowed. This fact explains the possibili-
ty of defect creation in the nematic phase. From Egs. (8),
we verify that the uniaxial order parameter obeys
S =2Qys, the solution when the surfaces impose a degen-
erate planar anchoring.

D. Isotropic to anisotropic phase transition

The model can describe two types of anchoring: the
positive Qg values concerning the planar degenerate case
(S=2Qg) and the negative Qg values concerning the
homeotropic case (S = — Q) (see the phase portrait, Figs.
2 and 3). As the temperature is abruptly decreased, the
initial isotropic equilibrium state becomes metastable
with respect to the more stable—homeotropic or
planar—nematic phase. Then the first-order phase tran-
sition cannot take place unless there are some fluctua-
tions, spatially localized and of sufficiently large ampli-
tude, that constitute the nuclei of the more stable nematic
phase and enable the system to overcome the energy bar-
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rier [located at the saddle fixed points (|/Q,|=0,
Qs=QJ ) for the homeotropic anchoring and

(|Q1l=3Q51~_, QS:QSIW) for the degenerate planar an-

choring, respectively, and where the free energy density is
a maximum]. This is a nucleation and growth
phenomenon.

Thus the selection of the initial fluctuations, inside the
isotropic metastable phase, is the decided starting point
for the simulations and must correspond to the physical
reality. It depends of the choice of the anchoring,
homeotropic or planar degenerate. For a degenerate pla-
nar anchoring, the fluctuations must satisfy Q,50 and
Qs >0 and then the initial state has a Qg mean value
slightly shifted up from Q¢=0; for a homeotropic an-
choring, the fluctuations obey Q; =0 and Qg <0 and then
the initial state has a Qg mean value slightly shifted down
from Q¢=0. Once the initial state has been fixed accord-
ing to the chosen anchoring, the system evolves towards a
determined physical nematic state and the unphysical
coexistence between planar and homeotropic states is
prohibited.

1. Homeotropic case

For a homeotropic uniform director field, the full set of
equations is reduced to a single nonlinear equation
describing the spatiotemporal evolution of the scalar
orientational order parameter Qg

dQs _
dt

-3 2AQS~—iZB—Q§+6CQ§— 1—

2K
3 V2Qq
(17)

which can be rewritten, with the help of the relation

’

Qs = —S and after rescaling time and space,

as _ _|8f

7 3s Vs |, (18)
where f is given by

f=ASZ=—lziS3+%CS“. (19)

Equation (18) is a nonlinear partial derivative equation of
Landau-Ginzburg type for a nonconservative scalar order
parameter.

The system is initially prepared in the isotropic state
and quenched at a lower reduced temperature T /T, at
which it becomes metastable, that is, between T* /T, and
1, the chosen reduced temperature is 7 /7, =0.88 when
T*/T,.=0.863; see Fig. 1. We start the simulations with
an initial state with finite fluctuations, with a mean value
shifted slightly towards the positive S values, as previous-
ly explained.

In Fig. 4 we show the spatiotemporal evolution of the
orientational order parameter S [obtained by numerical
simulations of Eq. (18)]. The droplets of the more stable
anisotropic phase grow in the metastable isotropic con-
tinuum. In addition, we note from the orientational or-
der parameter sections that, as soon as the order parame-
ter value inside the droplets has reached its equilibrium
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FIG. 4. Time evolution of the orientational order parameter
S during the isotropic-homeotropic nematic phase transition
(homeotropic anchoring); T /T, =0.88 (see Fig. 3). From left to
right: t/Atr=147,270,329 with time and space units Ar=0.08
and Ax=1.00, respectively. Top: two-dimensional gray color
visualization (light gray represents the isotropic phase and the
dark gray the nematic droplets). Bottom: sections, along x, of
the orientational order parameter (the upper horizontal dashed
line corresponds to S =S and the lower one to S =0).

value S%, the isotropic-nematic interfaces move aside
without changing the shape of the nuclei. There is no
depression zone at the base of the droplets, contrary to
other nucleation and growth processes (such as, for ex-
ample, the phase separation in binary mixtures where
there is a mass conservation constraint).

By image analysis, we quantitatively study the time
evolution of the mean radius of the droplets R (¢). It
scales (Fig. 5) asymptotically as R (¢)x<t® with a=1,
which is consistent with the theories of Chan [17],
Ostner, Chan, and Kahlweit [18], and Allen and Cahn
[19].

When the system is prepared in an anisotropic homo-
geneous phase and quenched to a higher temperature
where the anisotropic phase becomes metastable, that is,
between T, and T** (with T** /T,=1.017), a nucleation
and growth process of isotropic droplets takes place with
the same time law as for R ().

240 1 L 1 1 1
160 L
R E L
80 -

0 : : : r T
100 500 300 1300

FIG. 5. Time evolution of the droplets mean radius during
the phase transition R (¢) <#® with a=1. R(t) and ¢ are dimen-
sionless (length and time have been renormalized R —R /Ax
and ¢t —t /At with Ax=1.2 and At=0.05).
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2. Planar case

This is the more interesting case since it allows the
description of both the phase transition (nucleation and
growth process) and the textures of the planar nematic
phase (Schlieren textures). This state corresponds to the
third set of fixed points and requires the full set of partial
derivative equations [Eqgs. (9) and (10)].

The calculations are made in the (Qg, Q;) plane and
the visualization in the physical space, as explained
above, by using either a gray field representation or a set
of small linear segments describing the local directors (see
Fig. 8 as an example). The first representation simulates
a crossed polarizers microscope: the dark gray corre-
sponds to an area in which the molecules are parallel ei-
ther to the analyzer (x axis) or to the polarizer (y axis),
while the light gray corresponds to area where the mole-
cules make an angle of 45° both with the analyzer and
with the polarizer. Thus the isotopic zones appear either
with a black color or with small dots.

We discretize time and space in steps numbers N, and
N, such that t=N,At and x =N,Ax, where At and Ax
are the time and space units. In our simulations, we have
used Az ~0.01 (K <0) or At=0.05 (K >0) and Ax =1.2
to ensure good stability of the explicit finite difference
scheme.

We initially prepare the system in an isotropic state
and quench it to the reduced temperature T /T, =0.88 at
which the isotropic state is metastable with respect to the
anisotropic phase. As previously explained, we must in-
clude, in the initial isotropic state (Qg=Q,;=0), fluctua-
tions of Qg of sufficiently large amplitude, which shift the
mean Qg value towards a positive value and ensure a bi-
furcation to the planar anisotropic state (see Fig. 2).

Figure 6 represents the time evolution of the isotropic-

N

FIG. 6. Time evolution of the director field during the
isotropic-nematic phase transition (‘‘degenerate planar” anchor-
ing) at T/T,=0.88, with K =0. From left to right and from top
to bottom: t/Ar=279,408,577,682,799,799,1304,1439,2613,
with Ar=0.05 and Ax=1.2. The configuration, at ¢ /At=799, is
visualized with the gray field and the defects (+ 4, —1) (inside
the small box) with small linear segments (director field).

~
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anisotropic phase transition, occurring via a nucleation
and growth process. The droplets of the stable nematic
phase expand to the detriment of the metastable isotropic
phase. Then, as any orientations inside the droplets are
equiprobable, their coalescence leads to a nematic phase
with a lot of topological defects. These defects are of
strength +1 and, since the total topological strength
must be zero, they recombine by pairs of opposite sign.
During the time evolution, pairs of defects annihilate un-
til the system reaches the planar uniform uniaxial phase
without any defect, as predicted by the phase portrait.

We also visualize, in Fig. 7, the three eigenvalues of the
tensorial order parameter, in a defect zone, at
T/T,=0.88. Starting first with an uniaxial solution of
the defect (artificially built), with a thinner isotropic core
of nearly one spatial step diameter, we obtain, after relax-
ation, a defect with a biaxial circular ring around the core
(with prolate organization of the molecules) and a uniaxi-
al core (with oblate organization of the molecules) [7]. In
the core of the defect, the three eigenvalues are
0.147:0.147:—0.294 and outside the defect zone (homo-
geneous state) they are 0.99:—0.495: —0495 (uniaxial and
prolate medium).

With a more realistic initial condition (nucleation of
stable anisotropic zones inside a metastable isotropic con-
tinuum), all the defects (such as those shown in Fig. 6) de-
velop with a biaxial core characterized by the three eigen-
values 0.443:—0.115:—0.328. Far from the defect zone,
we recover the values of the homogeneous uniaxial state.
This behavior is independent of the sign of the half-
integral disclination index.

An isolated, artificially built defect cannot escape from
the medium and then relax to a pseudoequilibrium state
with a uniaxial core. True dynamical defects evolve to a
homogeneous phase with a zero global topological
strength. So the biaxial structure of these defects corre-
sponds to an out-of-equilibrium configuration of the

FIG. 7. Three eigenvalues of the tensor order parameter at
the core of a defect, at T/T,=0.88 and K =0, with ¢ /At=0.05
and Ax=12. Top: defect (+ 1) at t/At=760, created from a
uniaxial solution at t =0. Bottom: Defect (— 1) at t/Ar=2613,
obtained from the isotropic-nematic phase transition (see Fig.
6). The visualizations are made with the gray field (four times
magnification), the director field (four times magnification) and
sections of the core along the x direction (sixteen times
magnifications; the dashed horizontal lines correspond to the
zero eigenvalue).
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director. Moreover, the radius of the core of the defects
increases and the inner biaxiality decreases when the
quench temperature becomes closer to the transition tem-
perature.

Finally, we observe that only defects of strength |s| =1
could appear in our system. This behavior is in agree-
ment with the energetical criterion, derived in the planar
model case, with the help of the Frank elastic free energy:
the energetic cost of a defect of strength s is proportional
to 52 [20,21]. An escape of a defect of rank 1 in the third
dimension, leading to a nonsingular continuous structure,
although energetically more favorable, is here prohibited
by the anchoring energy. We verify in Fig. 8 that a pla-
nar defect of strength 1, arbitrarily built at ¢t =0, cannot
correspond to a stable configuration and separates into
two more energetically favorable defects of strength + 1
(topological charge conservation), which repulse one
another during time.

We now briefly study, from a more quantitative point
of view, the annihilation laws of an isolate opposite pair
of defects of strength *1, in thin nematic films. The
simulations are made at various reduced temperatures
T /T, inside the metastability zone of the isotropic phase
and then between T* /T, and 1. Initially, at # =0, the de-
fects are separated by a distance R .

In Fig. 9 the time evolution R (¢), together with the
curve fits, at four reduced temperatures (among the
eleven explored ones) is reported. The annihilation
occurs more rapidly when the temperature is closer to the
transition temperature 7., where the system is less
strongly oriented. Moreover, at a given reduced temper-
ature, the interactions are stronger when the opposite de-
fects are closer to one another. These two simple re-
marks explain the presence, at low temperature and in
the first stages of the time evolution, of a set of points on
the curve R (¢), having nearly the same ordinate: it is a
problem of numerical precision in the location of the de-
fects, due to the very slow evolution of the short time
process.

By curve fitting, a time scale law of the form
R (t)x(ty—1t)° is obtained, where ¢, the time of defects
collapse, is temperature dependent and decreases with in-

FIG. 8. Separation, at T/T,=0.88 and K =0, of a planar de-
fect of strength +1 (¢ /At =0) into two defect s of strength + 1,
energetically more favorable (at ¢t /At=2819), with At=0.05 and
Ax=1.2.
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FIG. 9. Time evolution of the distance of separation between
two opposite strength defects, isolated in the medium
R(t)x(to—1t)°. R(t) and t,¢, are dimensionless (length and
time have been renormalized R —R /Ax and t—t/At with
Ax=12 and Ar=0.05). O, T/T.=0.98, a=0.3466; <,
T/T.,=0.95 a=0.3422; A, T/T.,=090, a=0.3389; o,
T/T,=0.866, a=0.3371 (with a mean absolute error on a of
7X107%.

creasing temperature (¢, is calculated with a mean rela-
tive error of 2.5X 10 %). The exponent a is slightly tem-
perature dependent and varies between 0.337 and 0.355
(with a mean absolute error of 7X 10™%), inside the me-
tastability zone. It obeys a law of the form
a=~a/(y—T/T,)¢ with a=0.326+0.001, y=1.007
+0.001, and €=0.018+0.001 (Fig. 10). We note that the
parameter ¥ is slightly different from unity (the value at
the transition temperature at which a defect annihilation
can always occurs), but never greater than the value of
the reduced temperature T** /T.,.

We then obtain a power time scale law R (z) for the de-

0.36 T T T 1
-
/
/
/
0.35 ’
/
qQ s
R
»
e
-
-
_ ¢
. -
0.34 - e
—*
.
. —
1 L It { e
0.88 0.92 0.96 1.00
T/Tt

FIG. 10. Reduced temperature dependence of the power ex-
ponent a of the R (z) law.
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fect annihilation process of the same form as the one de-
rived by de Gennes [4], where the exponent a was tem-
perature independent and equal to 1. In Ref. [4], the in-
teraction force between an opposite pair of defects has
been obtained from the nematodynamics equations in
which a core energy correction—a cutoff radius being as-
sociated with the central defect region—has been taken
into account. There the time evolution law of the dis-
tance between defects has been derived from hydro-
dynamics effects (viscous friction force).

On the other hand, our model is purely diffusive and so
does not take into account the coupling between fluid
flow and orientation (hydrodynamics effects). Further-
more, we consider the corrective contributions, at a given
quench temperature, to the free energy related to the con-
tinuous variation of the orientational order parameter
and to the defect structure: the biaxiality in the neighbor-
hood of the inner core. These reasons help explain the
discrepancy between the exponent values in the two ap-
proaches.

In real physical experiments, we never obtain a pair of
isolated defects of opposite strength. There is instead
many defects in the system and the average distance
R (2), related to the growing size of monodomains, can be
determined via the measurement of the number density of
defects p(t). The ordering process involves a decrease in
p(t) and then an increase in the domain size R (¢) [22].
The two quantities are obviously interrelated and we
have, the case of thin films,

R(t)xp(t)™12. (20)

p(2) is measured either by image analysis [23] or by the
evolution of the transmitted light intensity of the sample
when the analyzer is removed from the microscope
[22,24]. Measurements are moreover realized at inter-
mediate stages, where p(?) is sufficiently large [25]. Thus,
we determine numerically p(z) in order to quantify the
influence of the many-body disinclinations interactions
(attractive and repulsive ones between different pairs of
defects) on the time power law, previously established in
a special case.

We prepare the system at high temperature and
quench it to a lower one where the isotropic state is meta-
stable with respect to an anisotropic one. As a result of
the droplet coalescence phenomenon, it appears that
many defects are randomly located in the sample. We
calculate the time evolution of the number of defects in
the system, at a given reduced temperature
(T /T,=0.88), from ten initial states.

We find the same type of behavior for all the p(¢)
curves. Only the values of the particular time when a
drastic change of behavior occurs are different from one
run to another one, because of the different initial states.

We nevertheless display two main behaviors corre-
sponding to the early (interaction between a great num-
ber of defects pairs) and intermediate (interaction be-
tween the two or three nearest pairs of defects) stages of
the annihilation process. The very last stage, correspond-
ing to punctual annihilations of isolated pairs of defects,
is not significant.

We fit the first two parts of the curves and we find
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power laws of the form p(t)=t~® with average ex-
ponents, over the ten runs, equal to =~O0.1 in the early
stages and =~ 1.1 (with a dispersion lying between 0.7 and
1.5) in the intermediate stages. Experimentally, few au-
thors have shown behaviors of the same 7 % form, with
an exponent b varying between 0.7 and 1 [22,24,26,27,23].
Our result then, although slightly higher, is in rather
good agreement with these experiments. Unfortunately,
the dispersion on the individual exponent values is too
large to allow the study of the effect of temperature.

We can, however, say that this dependence is very
weak. So we obtain [from Eq. (20), at a given tempera-
ture] an average growth size of the monodomains
R (t)<t%3 in the metastability zone. The result, com-
pared with the direct determination of R (¢), indicates
that the many-body interactions increase rather
significantly the exponent of the annihilation time power
law.

3. Effect of the anisotropic elastic term
on the isotropic to anisotropic phase transition
and interfaces, in the planar case

We have previously seen, in the planar degenerate an-
choring case, with K =0, that the isotropic-anisotropic
phase transition takes place via the nucleation of spatially
isotropic domains of the stable nematic phase into a con-
tinuum of the metastable isotropic phase. The introduc-
tion of the anisotropic elastic term K0 leads to a spa-
tially anisotropic growth of the nematic droplet. In the
Landau free energy expression, expanded to the second
order in the gradient terms [Eq. (2), in the uniaxial limit
and with any uniform direction 1], the two spatial deriva-
tive terms are proportional, respectively, to
(Li+L,/6)(VS)?, which is spatially isotropic, and
(L, /2)(fi-VS)?, which is the spatially anisotropic term.
Once the director has been chosen, for example, along the
x axis, we have two terms of the form
(L;+2/3L,)(3,8)* and (L,+L,/6)(3,S)*. These spa-
tial derivative contributions to the free energy density
lead to two diffusion terms (L,;+2/3L,)d2S and
(L1+L2/6)8j2,, into the spatiotemporal evolution equa-
tions (9) and (10). Then, if K >0 (K <0), which means
L, >0 (L, <0), the diffusion coefficient along the x direc-
tion, the chosen director direction, is more (less) impor-
tant than the diffusion coefficient along the y direction
and so the droplet increases more rapidly in the x (y)
direction, which is parallel (perpendicular) to the direc-
tor.

Since the system of spatiotemporal equations is rota-
tionally invariant, the preceding qualitative reasoning is
true whatever the chosen orientation of the uniform
director inside the domain: when K >0, the domain
grows preferentially along the director and when K <0, it
grows preferentially perpendicular to the director. Such
anisotropic growth of domains are shown numerically in
Fig. 11, for a positive (physical case) and a negative K
value, with an initial uniform director chosen along the x
axis.

We now study the spatiotemporal development of the
interface. In the case K =0 (Fig. 12, first row), a spatially
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¥ t 3

FIG. 11. Effect of the (dimensionless) anisotropic elasticity
term K on the shape of a growing nematic droplet, with a uni-
form director (parallel to the x axis), inside a metastable phase,
at T/T.=0.88. From left to right: K =0, t/At=537 (with
At=0.05); K =0.4, t /At=1097 (with At=0.05); and K = —0.4,
t/At=4993 (with Ar=0.01). Upper and lower rows: gray and
director field representations.

isotropic droplet (initially prepared with a uniaxial pla-
nar configuration) develops with time with a biaxial inter-
face, the biaxiality being invariant with respect to droplet
rotation.

The effect of a nonzero elasticity anisotropy term K >0
is to induce, transiently, a spatially anisotropic character
of the interface biaxiality, in the intermediate stage of the
spatiotemporal evolution. Indeed, as seen in Fig. 12, for
K >0 and a uniform director along the x axis, the inter-

t«l{ ™

-
-y

FIG. 12. Biaxiality at the isotropic-nematic interface, at
T/T.=0.88, with At=0.05 and Ax=1.2. Top: K =0,
t /At=537. From left to right: two-dimensional gray field visu-
alization and section along the x axis (rotationally invariant)
showing the three eigenvalues and four times magnification of
the section, at the interface. Middle and bottom: K =0.4,
t/At=772. From left to right: a two-dimensional gray field
and the corresponding director field (where the two directions
of section are shown); the three eigenvalues along the x (middle)
and y (bottom) axes and four times magnification of these sec-
tions at the interface.
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face is biaxial in the main x direction of growth (Fig. 12,
second row), where the local directors lie perpendicular
to it, while it remains uniaxial (or very poorly biaxial) in
the orthogonal direction (Fig. 12, third row).

Later on, due to the nonlinear terms in the evolution
equations set, defects appear inside the droplet (Fig. 13).
Indeed, as a result of the different growth rates, depend-
ing on whether the local directors are parallel or perpen-
dicular to the interface, the interface suffers deformations
leading to the emergence of dips in the y direction and
the creation of a pair of defects + 4, along the same axis,
inside the domain. The local director is again perpendic-
ular to the interface in the bottom of the wells and the
dips fill in; then the isotropic-anisotropic interface recov-
ers its biaxial character at any points. These behaviors
have been verified with any uniform orientation inside the
uniaxial nematic droplet.

However, the stage where defects appear inside the
droplet is prevented, in real nematic samples, by the for-
mation of many droplets whose growth is generally
stopped by the coalescence phenomena between neigh-
bors leading to defect creation. The biaxial character of
the droplet interface explains why the core of the defects
itself also has a biaxial structure.

Finally, we note that the presence of the anisotropic
term K (which leads to coupling between the spatial vari-
ations of the directors and of the orientational order pa-
rameters) does not significantly modify the time laws of
pair annihilation previously obtained. For a thin, uniaxi-
al, nematic film, only the bend and splay elastic constants
play a role in the sample deformation. Then, since the
present model imposes, at the considered expansion or-
der, equal bend and splay constants, there is no aniso-
tropic effect to the relative spatial positions of two defects
of opposite strength nor different evolution laws for the
+1 and —J strength defects [20,21,28,29].

E. Anisotropic to isotropic phase transition

The degenerated planar anisotropic state containing
some defects can become metastable with respect to the
isotropic phase when the reduced temperature is between
1 and T**/T,. Then, as in the case of the isotropic-
anisotropic phase transition, a nucleation and growth
process takes place. The cores of the defects of the aniso-
tropic phase, which are not isotropic but rather corre-
spond to lower values of Qg (located around the saddle

FIG. 13. Late stages of the spatiotemporal evolutions of a
droplet, with an initial uniform orientation of the director
(along the x direction), at T/T,.=0.88 and K =0.4 (see Fig. 12);
t/Ar=2299 with Ar=0.05 and Ax=1.2. From left to right:
gray field, the corresponding director field, and a zoom of the
director field inside the small box.
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FIG. 14. Start of the anisotropic-isotropic phase transition at
the cores of defects, T/T,=1.01 and K =0. From left to right
and from top to bottom: #/A¢r=0.391,975,2008,2640,3114, with
At=0.05 and Ax=1.2.

fixed point Q;ﬁ of the phase portrait), play the role of the

initial fluctuations simulating the nuclei of the planar
nematic phase inside the metastable isotropic phase (see
Sec. III D), which enable the nucleation and growth phe-
nomena to start (it is the amount of energy necessary to
render unstable the anisotropic metastable state). Then,
the isotropic nucleation naturally takes place in the core
of the anisotropic metastable defects, as observed in Fig.
14. These droplets increase in size and coalesce until the
system reaches a homogeneous isotropic stable state.
This behavior is experimentally observed (Fig. 15) on a
thin nematic film of PAA, quenched at a temperature
where the anisotropic phase is metastable. Obviously, if
the simulations are made at a reduced temperature above
T**/T., the anisotropic phase becomes unstable and al-
most the whole sample (and not only the core zones)
reaches, nearly instantaneously, an isotropic state.

FIG. 15. Experimental view of the isotropic nucleation at the
cores of defects in a semithin film of para azoxyanisole, at a
temperature slightly above T, =136 °C.
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1. Effect of the anisotropic elastic term K

This problem is, in all points, equivalent to the growth
of a uniformly oriented droplet in an isotropic medium.
We know that a uniform nematic domain preferentially
grows parallel to the direction of the director when K >0
and perpendicularly to it when K <0. The same behavior
is recovered when we study the growth of an isotropic
droplet in a uniform nematic medium. Figure 16 shows
the numerical simulations of the isotropic droplet growth
in the cores of an opposite pair of defects (+4, —1) for a
physical, positive K value (K =0.4).

We can qualitatively explain the anisotropic shape of
the isotropic droplets by separating the director field
around the defect core into several anisotropic zones,
with an early uniform director. As K is positive, the
zones of the isotropic phase grow more quickly when the
surrounding nematic director is perpendicular to their in-
terfaces than when the director is parallel to them. So
the isotropic zones are elongated along the surrounding
nematic director (see Fig. 17, gray schematic ellipses in
which the previous orientation of the director is shown).
Then we superimpose these anisotropic areas to build the
real spatially anisotropic shape (Fig. 17, the external dot-
ted line) of the isotropic phase domain. We have seen
that the cores of the defects constitute the germs of the
isotropic nucleation; thus we explain the anisotropic
shapes of the droplets observed in our numerical simula-
tions with this qualitative argument and in particular the
more pronounced anisotropic shape for the isotropic
phase domains in the core of the —1 defects than in the
core of the +1 defects. This last observation is due to
the fact that + 1 defects mainly imply bend deformations
and —1 ones splay deformations. Contrary to anisotrop-
ic nucleation, we do not observe any significative biaxial
interfacial zone. When K <O, the droplets grow prefer-
entially perpendicularly to the director and it is easy to
make the same qualitative reasoning on the schematic
representations of the defects in order to build the resul-
tant domains. Then we have for each defect the same,
but reversed (mirror image), shapes as in the case K > 0.

FIG. 16. Numerical simulations of the shape of the nucleat-
ing isotropic domains, at T/7T,=1.01 and K =0.4. From left to
right: ¢/At=0,1515,3322, with Az=0.05 and Ax1.2. Top: gray
colors. Bottom: director fields.
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FIG. 17. Schematic representation of the shape of the nu-
cleating isotropic domains (dotted line), from the core of defects
of strength +% and —%, with K >0, as obtained from the su-
perposition of elongated (along the nearly uniform surrounding
director) isotropic zones (gray ellipses).

IV. CONCLUSION

In this work, we have reproduced the main behaviors
of a thermotropic nematic thin film with the help of a
phenomenological Ginzburg-Landau approach. We have
taken into account both the orientational order parame-
ters and the directors of the system. With this approach,
we have described the isotropic-anisotropic phase transi-
tion, with particular emphasis on the nematic defects (an-
nihilation laws) and the biaxiality zones.

In addition, we have analytically and numerically ob-
served a nucleation and growth phenomenon of aniso-
tropic droplets, when an anisotropic elasticity parameter
K has been taken into account. This growth occurs, pref-
erentially, along the direction of the director when K >0
(the physical situation where the twist elastic constant is
lower than the splay and bend constants) and perpendicu-
larly to it when K <O.

Finally, we have shown that, when the anisotropic
nematic phase becomes metastable, the isotropic nu-
cleation takes place in the core of the defects. The role of
germs of nucleation played by the defects core has been
confirmed experimentally in a thin nematic film of PAA.

In addition we note that, when an anisotropic elasticity
term is included in the equations, the shape of the
domain of the isotropic phase becomes anisotropic and is
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different according to the sign of the topological charge
of the defects. This behavior could be experimentally an-
alyzed with the help of a polarizing microscope coupled
with an image analysis system, on thin nematic films.

We must note that our model is purely diffusive. So
the important effects related to the coupling between the
director motion and the fluid flow are not taken into ac-
count. Thus we plan to introduce in a future paper the
hydrodynamic equations of motion of a liquid crystal
[30-32] in order to see the modifications of the domains
shape during the isotropic nucleation and the corrections
to the annihilation law of an opposite strength defect
pair.

From a theoretical point of view, the model can be ex-
tended to the study of the influence of a strong quadratic
[16] or linear anchoring [33] or of an external field (mag-
netic, electric or elongational) [34] on the nature of the
phase transition (biaxial states, quasi-two-dimensional
second-order transition) and on the defects behaviors (for
example, Lehmann clusters [35]). In addition, the full
model (with spatial variations of the director along the z
axis) can be used to describe more complex problems
such as the phase transition and defects behaviors in thin
nematic films sandwiched between two different isotropic
media (confined geometry) [36].
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APPENDIX A

The set of coupled nonlinear partial derivatives
describing the spatiotemporal evolutions of the com-
ponents of the tensorial order parameter is written, after
the changes of variables and rescaling (where we have re-
placed 7 and X, respectively, by ¢ and x in order to simpli-
fy the notation) explicitly described in Sec. II C

a0 B 3B 2
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APPENDIX B

We study the stability of the fixed points defined in Sec.
III C with respect to infinitesimal fluctuations 6Qg, 6Qz,
and 8Q,;. Then the stability matrix is obtained by linear-
izing the system of equations, and the sign of its eigenval-
ues allows the determination of the type of stability in the
same way that the local curvature is determined in the
case of a one-dimensional curve.

We find that the first fixed point [Eq. (13)] is stable for
T>T* and unstable for T <T*. For the second set of
fixed points [Egs. (14), (Q,=0, Qg =Q§+) is always stable

for T<T** and (Q,=0, Qs=0QJ ) is a saddle point. In

this last case, we note that it is an attractive fixed point
along Q;z and Q,; (Qg) and a repulsive one along Qg
(Qg and Q) for T* < T <T** (T <T*) (see Figs. 1 and
2). For the last set of fixed points,
(|Q1|=3QS,QS=QSI+ ) is stable for all temperatures

lower than T** and (|1Q,|=3Qg, Qs=Q4 ) is always a

saddle point in the same range of temperatures.

To fix ideas on the stability of the fixed points studied
above, we develop the case of the homeotropic liquid
crystal in which the fixed points under consideration are
on a simple curve drawn on a hypersurface
(Q1r>Q11,QOs). The free energy density is written here as

f=a0i-203+3C08, ®1)

with Qg = —S [see Eq. (8)], where S is the uniaxial orien-
tational order parameter (degree of order of the mole-
cules around the fixed uniform direction i=n,%).

In Fig. 1 we represent the shape of the preceding free
energy density in which we have made the substitution
Qg — —S as a function of the temperature. Then, we ver-
ify that S=S° is unstable (the free energy curvature is
negative), S =SY is stable (positive curvature), and so the
isotropic state S =0 is stable. In fact, the isotropic state
is stable until T reaches T, and metastable between T,
and T*, the anisotropic state S% is stable below 7, and
metastable between T, and T**, but our perturbational
theory (infinitesimal fluctuations) cannot take into ac-
count this type of stability (the fluctuations must be
sufficiently large in amplitude to render unstable a meta-
stable state).

Finally, we note that at equilibrium, the planar case
corresponds to Q¢ =S/2 [see Eq. (8) with 6=/2] and
that, as B is a negative temperature-dependent coefficient,
the orientational order parameter is positive in all the
equilibrium configurations. This is not always the case
when an external field (magnetic, electric, or elongation-
al) is applied to the sample [34].
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FIG. 11. Effect of the (dimensionless) anisotropic elasticity
term K on the shape of a growing nematic droplet, with a uni-
form director (parallel to the x axis), inside a metastable phase,
at T/T.=0.88. From left to right: K =0, t/At=537 (with
Ar=0.05); K =0.4, t /At=1097 (with At=0.05); and K =—0.4,
t/At=4993 (with Ar=0.01). Upper and lower rows: gray and
director field representations.



FIG. 12. Biaxiality at the isotropic-nematic interface, at
T/T,=0.88, with Ar=0.05 and Ax=12. Top: K =0,
t /Ar=537. From left to right: two-dimensional gray field visu-
alization and section along the x axis (rotationally invariant)
showing the three eigenvalues and four times magnification of
the section, at the interface. Middle and bottom: K =0.4,
t/At=772. From left to right: a two-dimensional gray field
and the corresponding director field (where the two directions
of section are shown); the three eigenvalues along the x (middle)
and y (bottom) axes and four times magnification of these sec-
tions at the interface.



FIG. 13. Late stages of the spatiotemporal evolutions of a
droplet, with an initial uniform orientation of the director
(along the x direction), at T/T,.=0.88 and K =0.4 (see Fig. 12);
t/Ar=2299 with Ar=0.05 and Ax=1.2. From left to right:
gray field, the corresponding director field, and a zoom of the
director field inside the small box.



FIG. 14. Start of the anisotropic-isotropic phase transition at
the cores of defects, T/T, =1.01 and K =0. From left to right
and from top to bottom: t/Ar=0.391,975,2008,2640,3114, with
Ar=0.05 and Ax=1.2.



FIG. 15. Experimental view of the isotropic nucleation at the
cores of defects in a semithin film of para azoxyanisole, at a
temperature slightly above T. =136°C.



FIG. 16. Numerical simulations of the shape of the nucleat-
ing isotropic domains, at T/7T.=1.01 and K =0.4. From left to
right: t/Ar=0,1515,3322, with Ar=0.05 and Ax1.2. Top: gray
colors. Bottom: director fields.



FIG. 17. Schematic representation of the shape of the nu-
cleating isotropic domains (dotted line), from the core of defects

of strength +1 and — 1, with K >0, as obtained from the su-

perposition of elongated (along the nearly uniform surrounding
director) isotropic zones (gray ellipses).
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FIG. 4. Time evolution of the orientational order parameter
S during the isotropic-homeotropic nematic phase transition
(homeotropic anchoring); T'/T,=0.88 (see Fig. 3). From left to
right: t/At=147,270,329 with time and space units Ar=0.08
and Ax=1.00, respectively. Top: two-dimensional gray color
visualization (light gray represents the isotropic phase and the
dark gray the nematic droplets). Bottom: sections, along x, of
the orientational order parameter (the upper horizontal dashed
line corresponds to S =S and the lower one to S =0).
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FIG. 6. Time evolution of the director field during the
isotropic-nematic phase transition (“degenerate planar” anchor-
ing) at T/T,=0.88, with K =0. From left to right and from top
to bottom: t/At=279,408,577,682,799,799,1304,1439,2613,
with Ar=0.05 and Ax=1.2. The configuration, at t /Ar=799, is
visualized with the gray field and the defects (+ %, - %) (inside
the small box) with small linear segments (director field).
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FIG. 7. Three eigenvalues of the tensor order parameter at
the core of a defect, at T/T.=0.88 and K =0, with ¢ /At=0.05
and Ax=1.2. Top: defect (+ %) at t /At=1760, created from a
uniaxial solution at ¢ =0. Bottom: Defect (—1) at 1 /At=2613,
obtained from the isotropic-nematic phase transition (see Fig.
6). The visualizations are made with the gray field (four times
magnification), the director field (four times magnification) and
sections of the core along the x direction (sixteen times
magnifications; the dashed horizontal lines correspond to the
zero eigenvalue).



FIG. 8. Separation, at T/T,=0.88 and K =0, of a planar de-
fect of strength +1 (¢t /At =0) into two defect s of strength + -;-,
energetically more favorable (at 1 /Ar=2819), with Ar=0.05 and
Ax=1.2.



